LOCATION/TYPE

NEWS HOME

[ exact phrase in "" • results by date ]

[ Google-powered • results by relevance ]


Archive
RSS

Add NWW headlines to your site (click here)

Get weekly updates

WHAT TO DO
when your community is targeted

RSS

RSS feeds and more

Keep Wind Watch online and independent!

Donate via Stripe

Donate via Paypal

Selected Documents

All Documents

Research Links

Alerts

Press Releases

FAQs

Campaign Material

Photos & Graphics

Videos

Allied Groups

Wind Watch is a registered educational charity, founded in 2005.

News Watch Home

Avoiding wind power stocks: geographic diversity debunked 

Credit:  John Petersen, Seeking Alpha, seekingalpha.com 24 April 2011 ~~

Earlier this month I wrote a pair of articles (here and here) that questioned the reasonableness of the near universal assumption that the wind is always blowing somewhere and wind power infrastructure with a wide enough geographic dispersion would offer a relatively stable power output. I presented graphs from the Bonneville Power Administration and a study by the John Muir Trust that raised substantial doubt in my mind. The articles drew a well-reasoned response from my colleague Tom Konrad (here).

While many commenters understood the point I was trying to make, many others argued that the sample areas were too small or they didn’t fairly test the geographic dispersion theory. Since I hate unresolved questions, I went looking for a better answer and found it in historical wind power production data from five power authorities:

Most people would agree that a sample of five major systems spread over 17 timezones and two hemispheres has enough geographic diversity to provide a reliable basis for analysis. To simplify the process I took the following steps:

  1. I downloaded detailed production data from each power authority for the months of January and July 2010 and then calculated an average wind power output for each six hour interval;
  2. I then calculated a maximum and an average power output for each system during January and July 2010;
  3. I used the average power output of the systems to calculate a conversion factor that would bring all five systems up to the average power output of the BPA;
  4. To compensate for time zone differences I shifted Australia by three intervals (6 hours each) the BPA by two intervals and Alberta and Ontario by one interval; and
  5. I constructed a stacked graph to show what the combined power output of the five systems would be if they were each built-up to the point where their effective production capacity was equivalent to the BPA.

While the model is not a perfect representation with spot on accuracy, it’s certainly close enough to provide a reasonable representation for the purpose of testing the geographic dispersion theory. When all the calculations and adjustments were done, my model wind supergrid produced the following combined output for the month of January 2011.

It produced the following combined output for the month of July 2011.

Overall, the model wind supergrid would include over 16 GW of installed capacity. In January 2010, it would have had 16 intervals where it was unable to provide 2 GW of reliable power and two intervals where it was unable to provide 1 GW. In July 2010 it would have had 30 intervals where it was unable to provide 2 GW of reliable power and two intervals where it was unable to provide 1 GW.

My undergraduate degree was in accounting and while my first two articles on this topic were only enough to raise a question about the fundamental validity of the geographic dispersion theory, I believe a five power authority model that’s about as dispersed as anyone could imagine does far more than raise an inference.

It proves the theory of geographic dispersion is complete and unadulterated balderdash! The harsh reality is that wind power will never be stable or reliable enough to serve the needs of an industrialized society.

I continue to believe that investments like the First Trust ISE Global Wind Energy Index ETF (FAN), the PowerShares Global Wind Energy Portfolio ETF (PWND) and a host of publicly traded wind power stocks should be avoided.

Disclosure: None.

Source:  John Petersen, Seeking Alpha, seekingalpha.com 24 April 2011

This article is the work of the source indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this article resides with the author or publisher indicated. As part of its noncommercial educational effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Send requests to excerpt, general inquiries, and comments via e-mail.

Wind Watch relies entirely
on User Funding
   Donate via Stripe
(via Stripe)
Donate via Paypal
(via Paypal)

Share:

e-mail X FB LI M TG TS G Share


News Watch Home

Get the Facts
CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.

 Follow:

Wind Watch on X Wind Watch on Facebook Wind Watch on Linked In

Wind Watch on Mastodon Wind Watch on Truth Social

Wind Watch on Gab Wind Watch on Bluesky