[ exact phrase in "" ]

[ including uploaded files ]

ISSUES/LOCATIONS

List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
Get weekly updates

WHAT TO DO
when your community is targeted

RSS

RSS feeds and more

Keep Wind Watch online and independent!

Donate via Paypal

Donate via Stripe

RSS

Add NWW documents to your site (click here)

Wind Watch is a registered educational charity, founded in 2005.

Industrial Wind Turbine Seismic Source 

Author:  | Noise, Ontario, Regulations

Introduction

Despite their generally positive reputation as sources of clean, safe energy, Industrial Wind Turbines (IWTs) do have their critics. For years, residents living in the vicinity of IWT clusters have reported a variety of physical ailments which they attribute to the sounds and vibrations emanating from wind turbines (Kelley, 1985; CBC.ca, 2011). Noise bylaws, setback distances and other regulations applied to IWTs appear to be based on analysis methods used historically with industrial applications, where noise tends to be constant or semi-constant and in the audible range. The noise generated by IWTs is quite different – spiky and high amplitude – like an exploration seismic source pulse, and mainly found in low frequencies not detectable by human hearing (i.e. infrasound or “below hearing”). This article looks at the signals generated by IWTs from a geophysicist’s perspective. …

The pulse travels down the support column and through the near-surface as shown, while the air-pulse travels directly through the air. Seismic and air waves spread spherically outward in all directions while the amplitude envelope for the air wave may be higher downwind. Multiple copies of the pulse arrive at different times through different paths to create the time-series at the geophone receiver by summation.

Conclusions

The analysis of the operating IWTs on the ground and the seismic and air-pulse recordings confirms that large horizontal axis Industrial Wind Turbines act like airgun seismic sources that create low frequency pulses approximately once per second. The audible part of the air pulse makes a sound like “whump” so, as per geophysical industry tradition, we should name the IWT a “whumper” seismic source (as opposed to a thumper or puffer which would require a faster rise-time on the pulse). Most of the amplitude of the pulse exists at frequencies below the audible range, so a person stopping by the roadside to listen to an IWT may not hear anything and is likely to think that they make no significant “noise” at all.

Two aspects of IWT-generated noise do not appear to have been adequately accounted for in the creation of regulations for the IWT industry: that the noise contains many spurious, high amplitude spikes, and that it is mainly found in the low, infrasonic frequencies. An impulsive noise source such as an IWT requires amplitude measurements over short time windows like 1 second and little or no averaging of data during analysis. Long analysis time windows and averaging amplitude over 1/3 octave band frequency ranges is an acoustics industry testing method appropriate only for higher frequency “whirring” machines like diesel generators or milling machines. Current Ontario Government regulations do not include testing frequencies lower than 31.5 Hz. “Noise” testing procedures for regulation of IWTs should be revised to include all low frequencies created by the IWTs because the low frequency events contain the most power and highest amplitudes.

Conversion of non-weighted peak pulse amplitudes from the microphone recording in Figure 9, at 550 meters offset in 20 kph winds including the full frequency range to 1 Hz, revealed peak Sound Pressure Levels of 65 dB or more. Additionally, the SPL noise limit specification should not be increased with increased wind speed as this makes no sense. Governments and agencies tasked with the regulation of IWT installations should review and revise their testing protocols, so that regulations that reliably protect the health of people and animals living in the vicinity of IWTs can be implemented.

Michael West, P. Geoph., B.Sc., GDM

Canadian Society of Exploration Geophysicists | Recorder, Jun 2019, Vol. 44, No. 04

Download original document: “The Industrial Wind Turbine Seismic Source

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial educational effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
   Donate via Paypal
(via Paypal)
Donate via Stripe
(via Stripe)

Share:

e-mail X FB LI TG TG Share

Get the Facts
CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.

 Follow:

Wind Watch on X Wind Watch on Facebook

Wind Watch on Linked In Wind Watch on Mastodon