[ exact phrase in "" ]

[ including uploaded files ]

ISSUES/LOCATIONS

List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
Get weekly updates

WHAT TO DO
when your community is targeted

RSS

RSS feeds and more

Keep Wind Watch online and independent!

Donate via Paypal

Donate via Stripe

RSS

Add NWW documents to your site (click here)

Wind Watch is a registered educational charity, founded in 2005.

Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling 

Author:  | Health, Noise

Abstract
At present, infrasound (0–20 Hz) and low-frequency noise (20–500 Hz) (ILFN, 0–500 Hz) are agents of disease that go unchecked. Vibroacoustic disease (VAD) is a whole-body pathology that develops in individuals excessively exposed to ILFN. VAD has been diagnosed within several professional groups employed within the aeronautical industry, and in other heavy industries. However, given the ubiquitous nature of ILFN and the absence of legislation concerning ILFN, VAD is increasingly being diagnosed among members of the general population, including children. VAD is associated with the abnormal growth of extra-cellular matrices (collagen and elastin), in the absence of an inflammatory process. In VAD, the end-product of collagen and elastin growth is reinforcement of structural integrity. This is seen in blood vessels, cardiac structures, trachea, lung, and kidney of both VAD patients and ILFN-exposed animals. VAD is, essentially, a mechanotransduction disease. Inter- and intra-cellular communication is achieved through both biochemical and mechanotranduction signalling. When the structural components of tissue are altered, as is seen in ILFN-exposed specimens, the mechanically mediated signalling is, at best, impaired. Common medical diagnostic tests, such as EKG, EEG, as well as many blood chemistry analyses, are based on the mal-function of biochemical signalling processes. VAD patients typically present normal values for these tests. However, when echocardiography, brain MRI or histological studies are performed, where structural changes can be identified, all consistently show significant changes in VAD patients and ILFN-exposed animals. Frequency-specific effects are not yet known, valid dose-responses have been difficult to identify, and large-scale epidemiological studies are still lacking.

Progress in Biophysics and Molecular Biology 93 (2007) 256–279

Download original document: “Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial educational effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
   Donate via Paypal
(via Paypal)
Donate via Stripe
(via Stripe)

Share:

e-mail X FB LI TG TG Share

Get the Facts
CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.

 Follow:

Wind Watch on X Wind Watch on Facebook

Wind Watch on Linked In Wind Watch on Mastodon